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A SIMPLE UNCONSTRAINED DUAL CONVEX PROGRAMMING METHOD FOR
THE COMPUTATION OF DISCRETE MAXIMUM ENTROPY DISTRIBUTIONS

by

P. Brockett and K. Paick

ABSTRACT

--W formulate3,the generalized constrained maximum entropy problem

often used in a decision making context as an extended dual convex pro-

gramming problem. We then present the dual problen,- Iin this dual

setting the primal Lagrange multipliers are precisely the dual var-

iables, and are easily calculated directly by virtue of the simple

structure of the dual problem. An example involving the selection of

best equipment for an oil spill is presented as an illustration. -We-

contrast -or-solution with those given by previous authors.

'I.I KEY WORDS i - . j

Maximum entropy computation

Dual program for maximum entropy problems A-r, ..-

-- 7o.1



The notion of information is strongly connected to the amount of

uncertainty. In many problems encountered in operations research practice,

it is useful to estimate the discrete probability distribution for a

random phenonmenon under uncertainty. The general maximum entropy

principle is a very useful method for incorporation the uncertainty

of some situation into a probability distribution where one is trying

to make the most out of some limited knowledge and resources.

The maximum entropy estimation, a special case of minimum

discrimination information, has been used in numerous fields (e.g.

Brockett et al (1984], Thomas (1979].

In a recent paper, Freund and Saxena [1984] gave an algorithm to

compute maximum entropy probability estimates. In this paper we present

a much more general, and much easier computational method for obtainijng

these estimates. Additionally, our method easily extends to the

computation of minimum discrimination information estimates as well.

The bulk of this paper centers on the development of a dual convex

programming formulation for maximum entropy estimation, and shows how

to view maximum entropy estimation from this dual convex programming

point of view. We then point out the analytical properties of the

estimates which follow directly from the form of this duality. Section

I contains the mathematical formulation of maximum entropy. In section

II we present the unconstrained dual formulation for Lagrange multipliers

due to Charnes and Cooper (1975] and Charnes, Cooper and Seiford [1978].

Section III contains an application of the unconstrained dual convex

.
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programming method to an oil spill equipment selection problem considered

in Thomas (1979], and also in Freund and Saxena (1984]. The algorithm

we present is more general and easier computationally than that given

in Freund and Saxena (1984j.

I. MAXIMUM ENTROPY

Mathematically the problem of maximum entropy estimation is to

determine that density function p which is maximally uncertain, and

which satisfies certain given constraints, e.g.

max H(p)- - f p(x)ln[p(x)]X(dx)

s.t. fh0 (x)p(x)X(dx)-6O=l

fh1 (x)p (x)X (dx)=e1

hk (x)p(x)X (dx). ek

Here X is some dominating measure for p (usually Lebesgue measure in

the continuous case, or counting measure in the discrete case), 61"...ek

are the given constant values for a known set of moment functions h

hk and h 0(x)-l. Frequently in hypothesis testing or estimation of an

inferential distribution by maximum entropy estimation, one has information

about the possible candidate di.stribution in the form of inequality

constraints in addition to equality constraints. The form of range

constraints of probability distribution can be easily transformed to

inequality constraints. In this case we can add following constraints

to the original constraints;

-2-
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fhk+l (x)p(x)X(dx) < 9k+ I

fhk+n (x)p(x)X(dx) < ek+n .

The explicit calculation of maximum entropy density subject to the

given constraints is carried out by Lagrange multipliers. Since

solving the maximum entropy estimate entails solving the highly

non-linear constraint equation, it has been difficult to solve the

Lagrange multiplier system explicitly in order to obtain a closed form

solution expressed directly in terms of the known expected values 6.

(Leblanc and Reisher (1981], 8rockett et al [1980]). For this reason

certain numerical solutions were derived by approximation (first order

approximation by Guiasu (1980], second order approximation by Leblanc

and Riesher [1981)). Furthermore, the solutions in Thomas [1980] and

Freund and Saxena (1984] turn out to be different from the optimal so-

lutions. We will discuss these examples in section III.

II. UNCONSTRAINED DUAL PROGRAMMING APPROACH TO ESTIMATION.

In the first part of this section, we shall present maximum

entropy estimation in the discrete case via dual convex programming

with only non-positivity constraints. These results are special cases

of the results given in Charnes and Cooper(1975] and Charnes, Cooper,

and Seiford(19781.

Theorem 2.1

The following linear constrained maximum entropy primal problem

-3-



sup V(6) -6tin6

s.t. 6 tAi - bit (P)

6 tA2 < 2t

6> 0

has a dual problem

inf (z)- exp(A z +A2z)-bt z -b 2tz
2

s.t. Z 0.

There are three mutually exclusive and collectively exhaustive duality

states;

(1) A {6:6 tA =bit, 6tAZ<b 2t ,(>0} = 6 and (z) is unbounded below.

(2) Every feasible solution of (P) has a zero component for all 5eA*0

and &(z) with non-positive z2 has only an infimum. In this case infE(z)-

maxv(d)- min ;-(z) where ,D (z) contains only those terms of F(z) for which

5.>0 in some SEA.

(3) There exists SEA with 6>0 and (z) has a minimum at z In this case

following relationships obtain between the optimal primal and dual

variables

a) inf&(z*)- supv(6*)- maxv(6*) - min (z*)

b) v(6) has a unique maximum at 6*>O

c) 6* t a exp(AIz
1* + A2 z2*.

Note that state (3) is the usual state considered in applied problems.

Proof (adapted from Charnes, Cooper and Seiford (1978])

The constraints in primal problem may be written as

-.-
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6 tA I bI t

6tA2 + yt b b2t (2.1)

6, y > 0

Here At is m1xn1 and A2 is m2xn2. By the duality inequality,

- Z 61n6.< Z (exp(xi)-6 . .)- Z yiy i
i-icA i E B

with (2.1), y.<O, ieB. Also A-{1,...,m }, and B-{m 1, .... m2 }. i.e.

-6 tln6 < min exp(x)-(6 tx +y ty)= K(6,y, x,y) with 6,y > 0, y<0.

To decouple, we obtain 6tx + yt y = bIt z + 2tz2 and

( t ' t ) [ x ( 6 t y t [ A ' A 2  '1i ~

where we have set

thus we obtain the dual problem

inf !*(z) E exp(A1z
I + A z) - b tz - b

s.t. z2< 0 .

Because state (3) is the most usual and encountered state, we shall

present the proof for state (3) only. The proof of (1) and (2) may be

found in Charnes, Cooper and Seiford (1978].

Let K(6,y,x,y)- exp(x) - 6tx - yty for 6,y>O, xeR and define

g(6)- inf K(6,y, x,y)- -6 tin6. Because of the constraint

(ot yt)[AI A]- (bIt, b2t) and by settinj ' A E

-5-
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we have g(6) --6t In(6) < exp(x) - 6 tx - ty

exp[ Az 1 + A -2z2  6t[ A1 + A2 z -  t z 2

- exp[ A'zI + A 2 z2 - bIzI - b z2

1 2 ti bit, A 2 2
which holds for all z ,z < 0 , -(6: &tA b t  t2 < b2t S > 01,

and y =(y : StA 2 + yt a b2t , y> 01. The equality holds for 6 exp

A1z1* 2Z 2*,

[Az + z I. Q.E.D.

If the requisites for state determination are not obvious, the

state may be charaterized by means of the following linear programming

problem:

max p

s.t. Iwt - St < 0

StAl = bIt

tA 2 < b2 t

6 >0

t
where w - (1,1,...,1). State (1) corresponds to infeasibility, state

(2) corresponds to ;1 0 and state (3) corresponds to p > 0. It is

obvious that there is no linear independence requirement, and all

possible behaviors for the system A are considered.

This result is very attractive since the dual problem (D) is an

convex programming problem involving only exponential and linear terms

2
with non-positivity constraint for z . Moreover, the desired Lagrangian

multipliers for the maximum entropy estimate (P) are precisely the dual

variables to (D), and (D) is easily solved numerically because of the

simply constrained nature of the problem (even unconstrained in the

.,.-.-.---' .-.-'..,........ ...-...-.- , ,..-.,." .....
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equality constrained case of the primal). Any of a number of readily

available non-linear programming codes can be used to solve the dual

formulation. Moreover, since we explicitly know the parametric form

of the optimizing density in terms of the unknown Lagrange multipliers,

and this form is unique and continuous in the unknown paramenters, the

procedure we employ in obtaining the Lagrange parameters via the dual

convex programming problem and then substituting into the parametric

form is stable numerically.

An alternative structure for a dual problem is a single one

parameter sequence of equality form. In order to make K(S,y, x,y) more

symmetric in 6 and y, and to remove the restriction of y<O, we adopt

the same procedure we employed before. We can change (P) into (P') w.l.o.g..

(P') max 5 tln - t lny

s.t. StA1 = bI
t

tA 2 + yt = bZt

6, y>O where e>O.

Let define K(6,y,x,y)- exp(x) + Eexp(y/S) - 6tx - y ty with C>O.

By the Charnes-Cooper duality theorem [19753, the following inequality

holds.

-t Ind - yt Iny < K(S,y,x,y).

Because of the given constraint

(St yt) [A1 A1  (blt, b2 t), and by setting

-7-
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we have

-6t n  < exp(x) - 6 x - y ty + eexp(y/e).

Thereby a new unconstrained form of dual problem (D') for (P') is

obtained.

(D') inf (z) - exp(A z + A2 z 2 ) + eexp(z 2/) - bIt z - b 2tz 2

The duality theory of (P') and (D') is exactly that of the equality

case presented in Brockett, Charnes and Cooper (1980]. Charnes, Cooper

and Tyssedal (1983] proved that (P') is equivalent to (P) when e approaches

zero, and as a result (') gives the solution to (D).

III. NUMERICAL EXAMPLES.

Two examples of maximum entropy estimates are presented. These

are based on the oil spill problem in Thomas (1979]. The following

four alternatives exemplify the decision problem for a particular

habor area (see Thomas 1979] for the details)

a 1 contract all clean-up activities

a2: procure equipment A for open area spills and contract for

pierside clean-up

a 3: contract for open area spills and procure equipment set B for

pierside clean-up

a4 : procure equipment set C for all spills.

Once the maximum entropy distribution is derived, the expected annual

cost of each alternative j, E(A.), for both problems can be easily-

calculated as E( A. ) - ZAC ijP i. where ACi. is the annual cost of ith

t h i
alternative for i state. We will provide the problem and solution for

maximum entropy estimation part only.

The problem presented in Thomas (1979] reduces to the following:

-8-
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max - TpiIn pi

S.t. LpI .25 1< P .60

P• p .25 < p2 < .50

Pi+ 2 > P3+P5+P6  .I0 < p3 < .40

P5 --- P6 0 < Pi < .30 ,i-4,11,12

PlO < .P7 0 < Pi < .50 i -5,.... ,9

Pq <- P8 0 < PIO < .20

P12 i- P 11+  P6

P 7 - PIO + P11 + P12

Pi > 0

Freund and Saxena simplified the above problem by choosing only a subset

of the given constraints, namely the interval constraints, and non-

negativity constraints for the Pi's and of course the normalizing

constraint. Instead solving the simplified problem of Freund and

Saxena by the technical algorithm they present, we note that we can

get the optimal solution by intuition in this case. Due to the maximum

entropy principle, p would be a uniform distribution if there were no

constraints other than the usual normalizing and non-negativity

constraints. pl, P2, and p3 must, however, have the value of their

respective lower bounds since these lower bound values are greater than

1/12 which is the value in uniform distribution giving maximum entropy.

Given these lower bounds, the rest of the probabilities pi, i,-4,...,12

would strive to uniformaly allocate the residual probability 1-p .p2-p3

-9-
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Thus the intuitive optimal solution shouid be p1=P2 =.25, p3=.10 and

pi=.4/9(i= 4 ,...,12). In fact, exactly the same optimal solution is obtained

by solving the dual problem according to the technique given in this paper.

The maximum entropy value is 2.1688. Freund and Saxena did not provide

the probability distribution. The expected annual cost, however, in their

paper implies their algorithm did not find the optimal solution. Their

expected annual costs are (18.65, 17.33, 15.80, 16.33). These are

different from our value (18.761, 17.428, 15.888, 16.555) which were

obtained using the optimal solution to the dual of the constrained

maximum entropy problem.

Using the duality based algorithm presented in this paper, we are

able to go even further than Freund and Saxena and solve the original

problem in Thomas. We obtain the optimal solution

pl= .25 p2 ..25 p3 .10 p4=.0472 p5M.0472 p" -.0472
p73 4 5818 p6 -.0472

p. .4 72 P1 . 02 .*"

.0883 p* .0472 p*..0472 p"0 M .0274 pll
= .0274 P12=.0274.

This has a maximum entropy value of H(p")- 2.14425549. The solution in

Thomas is different from our results even though it has only a slightly

smaller H(p*) value. The resulting "optimal" probabilities differ quite

a bit from our solution in some cases ( p5= .044 instead of .0472,

p6' .051 instead .0472).

In the dual formulation of the maximum entropy problem, as we

proved, the computation is easily accomplished using any of a number

of existing non-linear programming codes, and it is guaranteed to obtain

-10-



the optimal solution because of the special known parametric form of the

primal problem, and our dual programming technique for obtaining the

parameters. It can be applied in both (0) and (D'). We find that the

optimal solution in (D') is very close to the optimal solution in (D)

as expected, and so we might use (D') instead of (D) in certain cases

if we prefer unconstrained optimization. Also we can extend the re-

sult of the Charnes-Cooper duality theory to continuous maximum entropy

cases in the same manner (Charnes et al (1978]). Additionally, all

of the duality results (and consequent computational savings) presented

in this note on maximum entropy estimation carry over directly to minimum

discrimination information (MDI) estimaiton with non-uniform "goal

densities". See Charnes, Cooper and Seiford [1978] and Brockett, Charnes

and Cooper [19801 for de.tails.
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